

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2022 IEEE

Managing Data Models in Broker-Based

Internet/Web of Things Architectures

Pierfrancesco Bellini, Luciano Alessandro Ipsaro Palesi, Paolo Nesi

University of Florence, Distributed Systems and Internet Technology, DISIT Lab

https://www.disit.org , Https://www.snap4city.org, corresponding: paolo.nesi@unifi.it

In this context, an IoT/WoT Platform should abstract and

manage all the entities/devices in the IoT Network, allowing

to exploit them regardless of their position (connection with

gateway/brokers), owner, protocol, format, etc. Platforms

need to manage multiple IoT Networks and Brokers: some

Brokers can be managed by third parties, e.g., the External

Brokers; while the ones directly managed by the platform

are called Internal Brokers. In realistic scenarios, third-

party brokers are not setup and managed in terms of

Device/Entity registration, subscription, data storage,

search, etc., by the platform. As to External Brokers,

entities/devices are registered on the broker, without

providing notification to the connected platforms. On the

contrary, a Platform should be able to recognize and manage

device messages exchanged with any kinds of broker, any

kinds of Device structure (which can be called the Device

Model, for example the FIWARE Smart Data Models, SDM

[1]) in order to register, process and store messages.

Recently, the Data Space concept has been introduced and it

can be regarded as a generalization of the IoT Device

concept [2], [3]. In the approach, a clear distinction from

IDS (International Data Space) Metadata and messages is

made, thus giving support for IDS Metadata Brokers.

 The proposed solution is based on: (a) leverage

interoperability reducing set up time to efficiently detect and

learn how to process unknown data structures (devices,

entities) distributed via brokers; (b) provision of data driven

high rates in a broker-based platform, thus preserving full

capability features of the data warehouse. To this end, an

extension of the Snap4City Directory concept and tool has

been created. The Directory is the main drive for

interoperability in an efficient manner, and a number of

other platform components serving the Directory are

involved in obtaining the required performance to satisfy

point (b). The solution supports: (i) Internal and External

brokers, (ii) automated registration of devices/entities

managed into External Brokers’ single- or multi-tenant

services, (iii) automated registration by harvesting and

reasoning of data models/entities compliant with standard

models such as FIWARE SDM, and any custom Data

Model in Snap4City IoT Device Model providing a formal

semantic definition of device attributes, (iv) fast data

ingestion for ingesting / migrating historical data from

legacy platforms and services to a new established uplevel

platform, (v) sustained data usage from query demand and

for data driven show changes in real time.

I. ARCHITECTURE OVERVIEW FOR INTEROPERABILITY

As reported in Figure 1, the Directory interacts with

Internal Brokers to perform registration of devices/data

flow (represented as D1, D2… Dn, sensors, actuators and

data flow channels). It performs the semantic registration of

device (data entities) into the Knowledge Base, KB (which

is a semantic database RDF store) where all the entities and

their relationships are modelled. The interoperable

composition of data entities is guaranteed by the adoption of

Km4City Ontology [4], [5] that creates a uniform layer

abstracting from physical details and mechanisms needed to

access them through different Brokers and usage of several

data models and their validation, as well as semantic

interoperability and matching. In the event of data lack, the

KB provides knowledge to complete information on devices

with the semantic part. In most Platforms, storage (including

time series) is called Data Shadow and it allows to create

some historical data of the Devices/Entities. In Snap4City,

these data flow/messages can be produced by processes such

as: IoT App (node-RED), Dashboards, and data analytics

processes (in Python, Rstudio, etc.), etc.; they are not

described in Figure 1.

Figure 1 – Overview of the Architecture for data ingestion.

Snap4City models vs FIWARE models

FIWARE is a foundation which promotes open-source

ORION Broker in standard NGSI. FIWARE includes a

series of Generic Enablers software modules that perform

functions in various IoT-based applications. FIWARE

provides mechanisms for modelling and managing data and

introduces RESTful NGSI API to interact with Orion

Broker. According to NGSI V2 standard, each attribute has

a name, a value and may provide its own metadata, and

among the metadata, it may also define the unit of measure,

the unitCode. In most SDMs, the unitCode is not defined

leaving to data producers the choice to adopt some of its

own. In the Snap4City model, each attribute has to be

defined by the proprieties: Value Name, Value Type, Value

Unit and Data Type. In this way, each device model

attribute has a precise semantic formalization by name (e.g.,

V1), Value Type (e.g., Voltage), a specific unit of

measurement by the Value Unit (e.g., V, mV, KV, vector of

https://www.disit.org/
https://www.snap4city.org/

mV values) and the Data Type clarifies the type of the data

(e.g., integer, float, string, json). Please note that, Type in

NGSI and Data Type of Snap4City refer to a different

meaning. In particular, the NGSI Type is more generic than

the Snap4City Data Type. For example, if the value is a

number the NGSI Type can be “numeric”, while a similar

Snap4City Data Type can be “integer”, “float” or “double”.

The FIWARE NGSI attribute definition is not specific

enough to be processed by an inferential engine, due to its

lack of semantic details; in fact, the NGSI unitCode is user

defined and does not provide a unified semantic (does not

belong to a common Dictionary), thus it may not be enough

for the automated process. In the FIWARE usage of NGSI,

the resolution is outsourced at application level. In

Snap4City, the resolution is defined in a Dictionary (of KB)

to conform any arrival message, to be faster and simpler in

data ingestion and processing, while in FIWARE NGSI each

message could change the unitCode.

Brokers’ Registration

The first step to exploit the architecture as reported in

Figure 1 consists in the broker registration. As seen in the

introduction, some platforms only provide support for a

number of ready to use internal brokers. Snap4City allows

the automated deployment of dedicated Orion brokers

connecting them as Internal Brokers and it also supports the

registration of External Brokers. In the event of External

Orion Brokers, a given number of additional capabilities is

possible. In the broker registration phase, several parameters

are requested such as: endpoint, security, name,

External/Internal, single/ multiple tenants, etc. Each broker

is associated with a specific user or public, and each user

belongs only to a single organization for security and

privacy aspects [4], [6]. External Brokers are managed by

third parties including their accessibility and usage. Other

differences between Internal and External Brokers consist in

the management of IoT Devices as explained hereafter.

Once a broker is registered, the IoT Directory automatically

performs the data platform subscription (Ni-Fi) to the new

broker for all its devices/topics, so that each new message

generated by the broker would be directly brokered to data

storage. On the other hand, this may not be true for the

External Brokers since the IoT Directory/KB does not know

all the entities/topics if they are not provided in the External

Broker registration phase.

External Brokers and their Devices/Entities

To become easily interoperable with legacy brokers of third-

party networks, we have defined a solution and process for

the registration of External Brokers and their entities. At the

first registration of an External Broker, thousands of devices

should be discovered. In fact, Devices registered on a never

connected External Brokers, are not registered on the IoT

Directory and KB and as a consequence, Ni-Fi is not

prepared to manage new data messages.

 According to a faster approach, we may suppose that the

Snap4City Platform knows a set of Data Models (IoT device

Models, FIWARE SDM, etc.). Subsequently, the harvesting

process may recognize any device model (from a quick

analysis of message format, device type and ID). In order to

solve this problem, an automated harvesting approach of

Devices/Entities on External Brokers has been. The

registration of devices from External Brokers is one of the

most innovative aspects addressed by IoT Directory which

is capable of (i) harvesting brokers for device discovery, (ii)

resolving semantic gaps on IoT device attributes/variables,

(iii) registering devices, thus shortening the data ingestion

and interoperability processes.

As to interoperability, the main identified and solved

problems are those related to a large variety of Data Models

coming from non-controllable External Brokers. The issue

has been solved by designing and implementing a harvester

and reasoner that is capable to automatically

recognize/understand and map the new data models/types

into those already known by Knowledge Base. This

approach, together with the definition of a comprehensive

meta model and dictionary, has allowed to speed up the

process more than 800 times. Furthermore, the process is

helped by Km4City ontology and Data Dictionary to

recognize the new data types and models according to the

semantic domain. Moreover, any processes of data

discovery, registration and ingestion also impact on

performance. To this end, the proposed solution has been

assessed in terms of performance in harvesting brokers,

discovering and registering devices, collecting messages and

data access; thus, providing evidence of the maximum

performance which can be obtained by each single front-end

/ back-end component/area and how they are influenced

each other in the whole architecture.

Future work can be oriented on enforcing stronger

encryption mechanisms which may impact on the protection

of data and connections. An activity in this direction could

be to investigate the enforcement of blockchain solutions on

specific IoT devices.

REFERENCES

[1] F. Cirillo, G. Solmaz, E.L. Berz, M. Bauer, B. Cheng, E. Kovacs, A
standard-based open source IoT platform: FIWARE, IEEE Internet of
Things Magazine. 2 (3), (2019) 12–18.

[2] U. Ahle, J.J. Hierro, FIWARE for data spaces, Designing Data
Spaces. (2022) 395. In: Otto, B., ten Hompel, M., Wrobel, S. (eds)
Designing Data Spaces. Springer, Cham. https://doi.org/10.1007/978-
3-030-93975-5_11.

[3] M. Jarke, C. Quix, Federated Data Integration in Data Spaces,
Designing Data Spaces. (2022) 181. In: Otto, B., ten Hompel, M.,
Wrobel, S. (eds) Designing Data Spaces. Springer, Cham.
https://doi.org/10.1007/978-3-030-93975-5_11.

[4] C. Badii, P. Bellini, A. Difino, P. Nesi, Smart city IoT platform
respecting GDPR privacy and security aspects, IEEE Access. 8
(2020) 23601–23623.

[5] P. Bellini, D. Nesi, P. Nesi, M. Soderi, Federation of smart city
services via APIs, in: 2020 IEEE International Conference on Smart
Computing (SMARTCOMP), IEEE, 2020: pp. 356–361.

[6] C. Badii, P. Bellini, A. Difino, P. Nesi, G. Pantaleo, M. Paolucci,
Microservices suite for smart city applications, Sensors. 19 (21),
(2019) 4798.

[7]

https://doi.org/10.1007/978-3-030-93975-5_11

