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Abstract — With the growing processing power of computing 

systems and the increasing availability of massive datasets, 

machine learning algorithms have led to major breakthroughs 

in many different areas. This applies also to resource-

constrained IoT and edge devices, which will often benefit from 

relatively small – but smart – local anomaly detection tasks that 

aim at protecting the device, or the information they convey 

from sensors towards a central node. This paper overviews the 

process we are following to provide small devices with anomaly 

detection capabilities, in order to make them self-aware of their 

health state, and eventually take appropriate countermeasures. 

Our methodology applies to a wide range of Linux-based 

devices, but is applied to a specific ARANCINO device, which 

has already been successfully used in many smart cities 

applications. 
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I. BRINGING ANOMALY DETECTION TO THE EDGE 

Edge learning refers to the deployment of Machine 

Learning (ML) algorithms at the network edge [6]. The key 

motivation of pushing learning toward the edge is to perform 

on-site preprocessing and filtering of data, and also to provide 

edge devices with sophisticated yet lightweight means to 

optimize their performance. However, bringing ML on the 

edge is far from trivial and comes with many potential issues 

and limitations [5], [6], [7]. Whereas the vast majority of 

studies on ML rely on lab setups for which we assume the 

availability of huge server farms, GPUs and any kind of 

accelerators (including FPGAs), deploying ML algorithms in 

the wild comes with obvious concerns. Those are not to be 

intended as showstoppers, but require a dedicated 

methodology to collect data, choose adequate ML algorithms, 

train and deploy them on devices.  

This study explores how to bring ML algorithms to edge 

devices and make them work as anomaly detectors. This 

would transform a common device into a self-aware, or self-

checking device that is able to monitor itself and seek for 

potential performance anomalies due to errors or attacks.  

II. DESIGNING SELF-AWARE EDGE DEVICES 

Our methodology for deploying anomaly detectors that 

suits the specific characteristics of edge devices relies on the 

following 4 main steps.  

S1. Create an error model that covers most of the common 

errors in Linux-based IoT devices. 

S2. Create a monitoring system that fits our case study but 

also applies to similar devices. 

S3. Perform error injection campaigns in which we monitor 

the behavior of the target device under normal operating 

conditions and when errors are injected. 

S4. Use collected data to train anomaly detectors that can then 

be deployed in the target device to monitor their detection 

and timing performance. 

For the sake of brevity, we cannot detail each step here. 

Instead, we will provide the main ideas that guided our 

methodology, which we apply to ARANCINO [13] devices. 

A. Error / Anomaly Model 

We aim at understanding how the device reacts to 

common errors and failures and detect the performance 

anomalies that these events generate. Therefore, we contacted 

the stakeholder to discuss about the way the target 

ARANCINO device was made, potential vulnerabilities, 

existence of bottlenecks and relevant software or 

communication channels. Then, we scanned the literature to 

seek for error models that apply to a Linux-based embedded 

system / IoT device [8], [9], [10]. There is an overall 

agreement about the likelihood of one of the following events 

happening in a Linux-based OS. 

• Resource consumption: either CPU, primary and 

secondary memory may be filled / exhausted by 

malicious or malfunctioning software 

• Deadlock: critical sections are heavily used in any multi-

threading context. A shallow management of locks or 

semaphores may end up generating deadlocks and make 

the regular execution flow deviate from expectations. 

• Unexpected usage of network, in both directions. 

On top of that, we consider that ARANCINO devices 

heavily rely on the Redis [4] database: therefore we also 

consider erroneous usages of the Redis database, which we 

simulate as subsequent reads / write operations. Lastly, we 

disturb the regular usage of key processes that manage the 

overall device, namely the arancino and node-red Raspbian 

processes, and make them stuck for some time to simulate 

their potential malfunction. 

This leads to a total of 8 different errors (CPU usage, 

RAM usage, Disk Usage, Deadlock, Redis read, Redis write, 

Stuck arancino, Stuck node-red) that we will inject into our 

device, monitoring its behaviour in the process. 

B. A Lightweight Monitor for Linux-based Devices 

To do that, we need to equip the device with a monitor 

that has the following requirements: i) lightweight, ii) 

customizable regarding sampling interval and the system 

indicators to observe, iii) able to instrument different layers 

and components of the target system, iv) compatible with the 

Raspbian 9 Stretch system, the OS running on the 

ARANCINO devices. This means that the tool has to be 

either written in C/C++ (gcc 7.x), Python <= 3.5.3, or Java 

(v. 8 openJDK). 

Unfortunately, we did not find anything: as such, we 

coded our monitor ourselves, and made it publicly available 

through a public GitHub repository [3]. The monitor is 

written in Python 3.5.3 and equipped with a total of 7 probes, 

that can be activated at will: 

• Network (32 features): reads data from the system file 

/proc/net/dev 



• Chip temperature (1 feature): reads data from the system 

file /sys/class/thermal/thermal_zone0/temp 

• Virtual Memory (116 features): reads data from the 

system file /proc/vmstat 

• Memory Info (38 features): : reads data from the system 

file /proc/meminfo 

• IO Stats (6 features): uses the iostat Linux package and 

parses its textual output 

• Python Indicators (55 features): uses the psutil functions 

cpu_times, cpu_stats, getloadavg, swap_memory, 

virtual_memory, disk_usage, disk_io_counters, 

net_io_counters. 

• Redis DB (25 features): accesses to Redis performance 

indicators through the redis-py Python wrapper 

The reader should note that this monitor has only minimal 

dependencies and thus can be installed without requiring to 

download additional libraries. For further information, please 

refer to the documentation available at [3]. 

C. Experimental Campaigns 

We installed the monitor above (i.e., cloned the code from 

GitHub) into our target device and set the monitor to run, 

logging performance indicators once a second, while the 

ARANCINO was performing its usual tasks. Additionally, 

we prepared a script that injects the 8 errors in Section II.A. 

This injection is performed as follows: i) it activates with a 

given probability, and randomly chooses one of the 8 errors, 

ii) it lasts for a given amount of time (5 seconds in our setup), 

then the device is left alone for a cooldown period that makes 

it recover from the previous injection (5 seconds in our 

setup), iii) the timestamps of activation and de-activation of 

the error are then logged into a dedicated file. 

This provides us with an experimental testbed that we can 

activate at will and use to retrieve a virtually infinite amount 

of data, which is either corresponding to normal data or to the 

behaviour of the ARANCINO, while a specific error was 

injected. In other words, we collect a labelled dataset 

composed of: 

• the timestamp, a long int in ms; 

• a total of 276 system indicators, some of them remaining 

constant throughout the duration of the experiments and 

thus to be discarded at a later stage; 

• The label, a categorical field with 9 possible values i.e., 

normal or any of the 8 errors. 

D. Anomaly Detection 

A labelled dataset enables the usage of any supervised 

ML algorithm for detecting performance anomalies. This 

opens the ground for a plethora of different experiments and 

comparisons between detection performance of a multitude 

of algorithms. However, literature tells that the de-facto 

standard for processing tabular datasets (as ours is) is to use 

tree-based ML algorithms such as Decision Trees, Random 

Forests, (eXtreme) Gradient Boosting, Extra Trees, and 

others. Those algorithms typically outperform neural 

networks, even those that are being re-shaped to explicitly 

classify tabular data [12].  

III. WHAT’S NOW AND WHAT’S NEXT 

We are currently training different ML algorithms to learn 

how to detect performance anomalies in the ARANCINO 

device. This process is being carried out carefully to avoid 

common pitfalls [1] and using appropriate metrics for 

evaluations [2]. After the learning phase, we will deploy the 

learned models to the ARANCINO device, and quantify: 

• The false alarms they raise, and the fraction (coverage) 

of the errors that are correctly detected 

• Their response time, space and memory occupation, 

which are a typical concern when dealing with resource-

constrained devices. 

This will allow to choose the preferred ML algorithm for 

anomaly detection, complete the deploy and starting to plan 

how to take advantage of the alerts delivered by the anomaly 

detector to take automatic countermeasures and mitigate the 

occurrence of potential threats to the device. 
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