
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards a Self-Aware Edge Device

Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli

University of Florence, Department of Mathematics and

Informatics, Viale Morgagni 65 – Florence (IT)

{tommaso.zoppi, andrea.ceccarelli, andrea.bondavalli}@unifi.it

Nicola Peditto1, Maurizio Giacobbe1, Antonio Puliafito1,2

1SmartMe.io, via Salita Larderia, 98129 Messina (IT)
2Univ. of Messina, Dept. of Engineering, 98166 Messina (IT)

{nicola, maurizio, antonio}@smartme.io

Abstract — With the growing processing power of computing

systems and the increasing availability of massive datasets,

machine learning algorithms have led to major breakthroughs

in many different areas. This applies also to resource-

constrained IoT and edge devices, which will often benefit from

relatively small – but smart – local anomaly detection tasks that

aim at protecting the device, or the information they convey

from sensors towards a central node. This paper overviews the

process we are following to provide small devices with anomaly

detection capabilities, in order to make them self-aware of their

health state, and eventually take appropriate countermeasures.

Our methodology applies to a wide range of Linux-based

devices, but is applied to a specific ARANCINO device, which

has already been successfully used in many smart cities

applications.

Keywords — anomaly detection, iot, arancino, monitoring

I. BRINGING ANOMALY DETECTION TO THE EDGE

Edge learning refers to the deployment of Machine

Learning (ML) algorithms at the network edge [6]. The key

motivation of pushing learning toward the edge is to perform

on-site preprocessing and filtering of data, and also to provide

edge devices with sophisticated yet lightweight means to

optimize their performance. However, bringing ML on the

edge is far from trivial and comes with many potential issues

and limitations [5], [6], [7]. Whereas the vast majority of

studies on ML rely on lab setups for which we assume the

availability of huge server farms, GPUs and any kind of

accelerators (including FPGAs), deploying ML algorithms in

the wild comes with obvious concerns. Those are not to be

intended as showstoppers, but require a dedicated

methodology to collect data, choose adequate ML algorithms,

train and deploy them on devices.

This study explores how to bring ML algorithms to edge

devices and make them work as anomaly detectors. This

would transform a common device into a self-aware, or self-

checking device that is able to monitor itself and seek for

potential performance anomalies due to errors or attacks.

II. DESIGNING SELF-AWARE EDGE DEVICES

Our methodology for deploying anomaly detectors that

suits the specific characteristics of edge devices relies on the

following 4 main steps.

S1. Create an error model that covers most of the common

errors in Linux-based IoT devices.

S2. Create a monitoring system that fits our case study but

also applies to similar devices.

S3. Perform error injection campaigns in which we monitor

the behavior of the target device under normal operating

conditions and when errors are injected.

S4. Use collected data to train anomaly detectors that can then

be deployed in the target device to monitor their detection

and timing performance.

For the sake of brevity, we cannot detail each step here.

Instead, we will provide the main ideas that guided our

methodology, which we apply to ARANCINO [13] devices.

A. Error / Anomaly Model

We aim at understanding how the device reacts to

common errors and failures and detect the performance

anomalies that these events generate. Therefore, we contacted

the stakeholder to discuss about the way the target

ARANCINO device was made, potential vulnerabilities,

existence of bottlenecks and relevant software or

communication channels. Then, we scanned the literature to

seek for error models that apply to a Linux-based embedded

system / IoT device [8], [9], [10]. There is an overall

agreement about the likelihood of one of the following events

happening in a Linux-based OS.

• Resource consumption: either CPU, primary and

secondary memory may be filled / exhausted by

malicious or malfunctioning software

• Deadlock: critical sections are heavily used in any multi-

threading context. A shallow management of locks or

semaphores may end up generating deadlocks and make

the regular execution flow deviate from expectations.

• Unexpected usage of network, in both directions.

On top of that, we consider that ARANCINO devices

heavily rely on the Redis [4] database: therefore we also

consider erroneous usages of the Redis database, which we

simulate as subsequent reads / write operations. Lastly, we

disturb the regular usage of key processes that manage the

overall device, namely the arancino and node-red Raspbian

processes, and make them stuck for some time to simulate

their potential malfunction.

This leads to a total of 8 different errors (CPU usage,

RAM usage, Disk Usage, Deadlock, Redis read, Redis write,

Stuck arancino, Stuck node-red) that we will inject into our

device, monitoring its behaviour in the process.

B. A Lightweight Monitor for Linux-based Devices

To do that, we need to equip the device with a monitor

that has the following requirements: i) lightweight, ii)

customizable regarding sampling interval and the system

indicators to observe, iii) able to instrument different layers

and components of the target system, iv) compatible with the

Raspbian 9 Stretch system, the OS running on the

ARANCINO devices. This means that the tool has to be

either written in C/C++ (gcc 7.x), Python <= 3.5.3, or Java

(v. 8 openJDK).

Unfortunately, we did not find anything: as such, we

coded our monitor ourselves, and made it publicly available

through a public GitHub repository [3]. The monitor is

written in Python 3.5.3 and equipped with a total of 7 probes,

that can be activated at will:

• Network (32 features): reads data from the system file

/proc/net/dev

• Chip temperature (1 feature): reads data from the system

file /sys/class/thermal/thermal_zone0/temp

• Virtual Memory (116 features): reads data from the

system file /proc/vmstat

• Memory Info (38 features): : reads data from the system

file /proc/meminfo

• IO Stats (6 features): uses the iostat Linux package and

parses its textual output

• Python Indicators (55 features): uses the psutil functions

cpu_times, cpu_stats, getloadavg, swap_memory,

virtual_memory, disk_usage, disk_io_counters,

net_io_counters.

• Redis DB (25 features): accesses to Redis performance

indicators through the redis-py Python wrapper

The reader should note that this monitor has only minimal

dependencies and thus can be installed without requiring to

download additional libraries. For further information, please

refer to the documentation available at [3].

C. Experimental Campaigns

We installed the monitor above (i.e., cloned the code from

GitHub) into our target device and set the monitor to run,

logging performance indicators once a second, while the

ARANCINO was performing its usual tasks. Additionally,

we prepared a script that injects the 8 errors in Section II.A.

This injection is performed as follows: i) it activates with a

given probability, and randomly chooses one of the 8 errors,

ii) it lasts for a given amount of time (5 seconds in our setup),

then the device is left alone for a cooldown period that makes

it recover from the previous injection (5 seconds in our

setup), iii) the timestamps of activation and de-activation of

the error are then logged into a dedicated file.

This provides us with an experimental testbed that we can

activate at will and use to retrieve a virtually infinite amount

of data, which is either corresponding to normal data or to the

behaviour of the ARANCINO, while a specific error was

injected. In other words, we collect a labelled dataset

composed of:

• the timestamp, a long int in ms;

• a total of 276 system indicators, some of them remaining

constant throughout the duration of the experiments and

thus to be discarded at a later stage;

• The label, a categorical field with 9 possible values i.e.,

normal or any of the 8 errors.

D. Anomaly Detection

A labelled dataset enables the usage of any supervised

ML algorithm for detecting performance anomalies. This

opens the ground for a plethora of different experiments and

comparisons between detection performance of a multitude

of algorithms. However, literature tells that the de-facto

standard for processing tabular datasets (as ours is) is to use

tree-based ML algorithms such as Decision Trees, Random

Forests, (eXtreme) Gradient Boosting, Extra Trees, and

others. Those algorithms typically outperform neural

networks, even those that are being re-shaped to explicitly

classify tabular data [12].

III. WHAT’S NOW AND WHAT’S NEXT

We are currently training different ML algorithms to learn

how to detect performance anomalies in the ARANCINO

device. This process is being carried out carefully to avoid

common pitfalls [1] and using appropriate metrics for

evaluations [2]. After the learning phase, we will deploy the

learned models to the ARANCINO device, and quantify:

• The false alarms they raise, and the fraction (coverage)

of the errors that are correctly detected

• Their response time, space and memory occupation,

which are a typical concern when dealing with resource-

constrained devices.

This will allow to choose the preferred ML algorithm for

anomaly detection, complete the deploy and starting to plan

how to take advantage of the alerts delivered by the anomaly

detector to take automatic countermeasures and mitigate the

occurrence of potential threats to the device.

ACKNOWLEDGEMENTS

This work was partially supported by project SERICS

(PE00000014) under the MUR National Recovery and

Resilience Plan funded by the European Union –

NextGenerationEU. We thank eng. Francesco Alessi from

SmartMe.io for his support in preparing this paper.

REFERENCES

[1] Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi,

F., Wressnegger, C., ... & Rieck, K. (2022). Dos and don'ts of

machine learning in computer security. In 31st USENIX

Security Symposium (USENIX Security 22) (pp. 3971-3988).

[2] Chicco, D., & Jurman, G. (2020). The advantages of the

Matthews correlation coefficient over F1 score and accuracy in

binary classification evaluation. BMC genomics, 21, 1-13.

[3] Lightweight Linux Monitor GitHub (online),

https://github.com/tommyippoz/arancino-monitor

[4] Carlson, J. (2013). Redis in action. Simon and Schuster.

[5] Murshed, M. S., Murphy, C., Hou, D., Khan, N.,

Ananthanarayanan, G., & Hussain, F. (2021). Machine learning

at the network edge: A survey. ACM Computing Surveys

(CSUR), 54(8), 1-37

[6] Zhu, G., et. al. (2020). Toward an intelligent edge: Wireless

communication meets machine learning. IEEE

communications magazine, 58(1), 19-25.

[7] Merenda M, Porcaro C, Iero D. (2020). Edge machine learning

for ai-enabled iot devices: A review. Sensors, 20(9), 2533

[8] Koopman, P., Sung, J., Dingman, C., Siewiorek, D., & Marz,

T. (1997, October). Comparing operating systems using

robustness benchmarks. In Proceedings of SRDS'97: 16th

Symp. on Reliable Distributed Systems (pp. 72-79). IEEE.

[9] Zoppi, T., Ceccarelli, A., Bondavalli, A. (2019). MADneSs: A

multi-layer anomaly detection framework for complex

dynamic systems. IEEE Transactions on Dependable and

Secure computing, 18(2), 796-809.

[10] Chou, A., Yang, J., Chelf, B., Hallem, S., & Engler, D. (2001,

October). An empirical study of operating systems errors. Proc

of the 18th ACM Symp. on OS principles (pp. 73-88).

[11] Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep

learning is not all you need. Information Fusion, 81, 84-90.

[12] Gorishniy, Y., et. al. (2021). Revisiting deep learning models

for tabular data. Advances in Neural Information Processing

Systems, 34, 18932-18943.

[13] Giacobbe, M., Alessi, F., Zaia, A., & Puliafito, A. (2020).

Arancino.cc™: an open hardware platform for urban

regeneration. International Journal of Simulation and Process

Modelling, 15(4), 343-357.

https://github.com/tommyippoz/arancino-monitor

