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I. INTRODUCTION

Monolithic applications have shown limitations in terms
of scalability and maintainability. To face such downsides,
the Function as a Service (FaaS) model decomposes ap-
plications into small pieces of code called functions, each
focusing on a specific aspect of the application. Functions are
packaged within lightweight environments such as containers.
With FaaS at its core, serverless computing builds modern
cloud computing systems wherein developers only provide
their functions code, and the cloud provider does the rest,
i.e., deploying, scaling, and managing functions. Moreover,
functions run following an event-based pattern, and final users
are billed only for what they use with fine granularity.

In this context, consecutive function invocations from the
same client can be independent from one another or, more
often, can form a session. This has a state, which must
be preserved across invocations for the whole session time.
In cloud systems, where serverless was originally invented,
functions typically have to retrieve this state remotely at each
invocation, via an external service such as a database: we refer
to these functions as remote-state functions or λ-functions.
Different instances of the same λ-function are equivalent, as
they do not retain any state locally. As a result, (i) different
users can share the same function instance, (ii) consecutive
invocations from the same user can be forwarded to different
function instances, and (iii) resources allocated to inactive
instances can be freed after a short period of idle time.

Despite serverless was introduced for cloud data centers,
it is gaining momentum in edge computing as well. With
edge computing, micro-data centers are pervasively deployed
toward the network edge (close to or co-located with access
networks), leading to a geo-distributed infrastructure where
functions can run close to the users. This proximity provides
low latency and high bandwidth, which are needed by modern
Smart City applications having strict requirements, e.g., the
Internet of Things, Augmented/Virtual Reality, and smart
vehicles. Adopting serverless at the network edge is subject to
strong investigation. The main obstacle comes from the cloud-
oriented design of serverless, which does not always suit the
characteristics of edge computing systems. Let us focus on
session state management. λ-functions in the cloud degrade
performance only slightly, as both functions and state are
hosted in the same data center. Yet, for edge-hosted functions,
remote-state access may cause significant service latency and
network traffic, risking to nullify edge computing advantages.

To solve the above limitation, local-state functions (or
simply µ-functions) are raising as an alternative in serverless
computing. On the one hand, µ-functions avoid the overhead
to retrieve the state from a remote source. Nonetheless, they
are not as efficient and flexible as λ-functions, because each µ
instance is dedicated to a specific user or application session,
for which it provides data access in a private and persistent
manner. Moreover, µ instances are not triggered on demand
but are long-running to retain state across invocations.

Today, λ- and µ-functions are considered as two distinct
alternatives in serverless systems. Moving one step further
from this view, we advocate that such a dichotomy should
not exist, but rather a serverless function should be able
to adapt dynamically, i.e., switching its behavior from λ
to µ and vice versa, based on both internal and external
factors. This approach, which we introduce in [1] and further
develop in [2] through the definition of a resource allocation
problem, would relieve the function programmer from the
risk of making an uninformed decision at development time.
Moreover, it would let the serverless provider perform run-time
optimizations based on the current conditions in the system,
e.g., to increase resource efficiency. Furthermore, it would
allow to reduce the cost of operation of serverless functions, as
we briefly show in Sec. II. Finally, it would benefit applications
having requirements that dynamically change over time, as we
describe in Sec. III through a Smart Vehicle use case.

II. COST ANALYSIS

We analyze real serverless traces collected on Microsoft
Azure Functions and made available publicly1. The dataset
includes more than 44 millions of anonymized function in-
vocations from 856 applications. Such applications are very
heterogeneous, e.g., the number of daily invocations ranges
from very few to millions. Read accesses are 77% out of the
total. We consider that the cost of a µ-application is given only
by the time window when it is assigned a dedicated container:

cµ = ΩµTµ, (1)

where Ωµ is the cost per time unit and Tµ is the time
units the application spent as µ. On the other hand, for a
λ-application we assume that its cost is given by the number
of invocations and the type of state access, as follows:

1github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsBlobDataset2020.md
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Fig. 1. Comparison of operational costs. All costs are in $10−6.
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where ξλ is the cost per function invocation, σR
λ (σW

λ ) is the
cost per read (write) access, and NR

λ (NW
λ ) is the number of

function invocations with read (write) accesses. Values used
for the cost model are taken from publicly available prices of
Amazon Lambda@Edge2, where the invocation of 1 million
functions costs $0.6, the cost of a GET (PUT) operation to read
(write) the state is about $0.4 ($5) for 1 million operations,
and the cost per second of µ execution is $6.3 · 10−6.

Fig. 1 depicts the costs obtained with the three policies. As
shown, the µ-only and λ-only curves intersect: some applica-
tions are better served always as µ while others, representing
the majority in the considered dataset, as λ. However, by using
a λ + µ hybrid policy, the cost can be minimized for all
functions, which confirms our intuition that all applications
should be able to alternate between µ and λ in their lifetime.

III. A SMART VEHICLE USE CASE

Our use case is depicted in Fig. 2. We assume that a driver
takes her green car along the office-home path, and that the car
exploits a serverless function to assist the driver. On the way
home, the driving assistance logic is limited to speed control
and steering of the car. Latency and throughput requirements
are loose – 1000ms and 0.2Mbps [3] – and the function
runs as λ. As shown on the left side of Fig. 2, the first
function invocation is dispatched to a container on edge node
1 (step 1). The invocation is queued as that container has been
previously invoked by the yellow car (step 2). Once the green
car is served, the λ-container fetches the session state remotely
(steps 3 and 4), computes the response (step 5), sends it to the
green car (step 6), and pushes the new session state remotely
(step 7). In step 8, a new function invocation is performed.
Now, the invocation goes to a container on edge node 2. As
shown, the λ-container accesses the remote storage again to
read and write the session state. When the user reaches home,
the function enters autonomous parking mode (right side of
Fig.2), with stricter requirements – 10ms and 100Mbps [3].
Hence, the function changes to µ: the logic is invoked in step
1, session state is retrieved remotely to instantiate the function
as a µ-container, and the next invocations are dispatched to that
dedicated, local-state instance (steps 6-8).
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Fig. 2. On the left, λ-containers run a regular driving logic; on the right, a µ-container runs an autonomous parking logic.


